

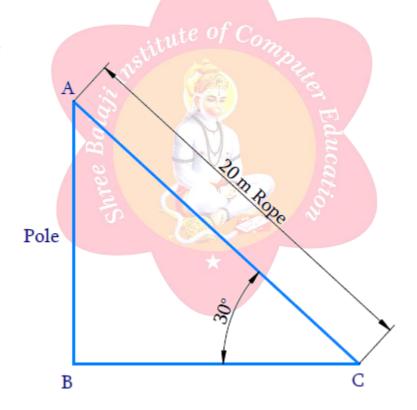
Shree Balaji Institute

Chapter - 9: Some Applications of Trigonometry

Exercise 9.1 (Page 203 of Grade 10 NCERT)

Q1. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see Fig. 9.11).

Difficulty Level: Easy


Known:

(i) Length of rope = 20 m

(ii) Angle of rope with ground = 30° = $\angle ACB$

Unknown:

Height of pole

Reasoning:

AB = Height of the Pole

BC = Distance between the point on the ground and the pole.

AC = Length of the Rope (Hypotenuse)

we need to find the height of the pole AB, from the angle C and the length of the rope. Therefore, Trigonometric ratio involving all the three measures is sin C.

In ΔABC,

$$\sin C = \frac{AB}{AC}$$

$$\sin 30^{\circ} = \frac{AB}{20}$$

$$\frac{1}{2} = \frac{AB}{20}$$

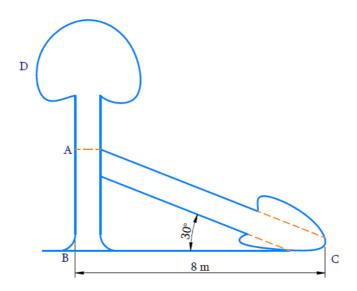
$$AB = \frac{1}{2} \times 20^{\circ}$$

$$AB = 10 \text{ m}$$

Answer:

Height of pole AB = 10m

Q2. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.


Difficulty Level: Medium

Unknown:

Height of the tree

Known:

- (i) Broken part of the tree bends and touching the ground making an angle of 30° with the ground.
- (ii) Distance between foot of the tree to the top of the tree is 8m

- (i) Height of the tree = AB + AC
- (ii) Trigonometric ratio which involves AB, BC and $\angle C$ is $\tan 0$, where AB can be measured.
- (iii) Trigonometric ratio which involves AB, AC and $\angle C$ is $\sin \theta$, where AC can be measured.
- (iv) Distance between the foot of the tree to the point where the top touches the ground = BC = 8 m

Solution:

In ΔABC,

$$\tan C = \frac{AB}{BC}$$

$$\tan 30^{\circ} = \frac{AB}{8}$$

$$\frac{1}{\sqrt{3}} = \frac{AB}{8}$$

$$AB = \frac{8}{\sqrt{3}}$$

$$\sin C = \frac{AB}{AC}$$

$$\sin 30_{\circ} = \left| \frac{8}{\sqrt{3}} \right|$$

$$\frac{1}{2} = \frac{8}{\sqrt{3}} \times \frac{1}{AC}$$

$$AC = \frac{8}{\sqrt{3}} \times 2$$

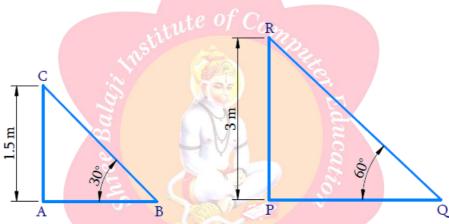
$$AC = \frac{16}{\sqrt{3}}$$

Height of tree =
$$AB + AC$$

= $\frac{8}{\sqrt{3}} + \frac{16}{\sqrt{3}}$
= $\frac{24}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
= $\frac{24\sqrt{3}}{\sqrt{3}} \times \frac{24\sqrt{3}}{\sqrt{3}}$
= $\frac{24\sqrt{3}}{3}$
= $8\sqrt{3}$

A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m and is inclined at an angle of 30° to the ground, whereas for elder children she wants to have a steep slide at a height of 3m and inclined at an angle of 60° to the ground. What should be the length of the slide in each case?

Difficulty Level: Medium


Unknown:

Length of the slide for children below the age of 5 years and elder children.

Known:

(i) For the children below the age of 5 years.

Height of the slide = 1.5m Slide's angle with the ground = 30°

(ii) For elder children.

Height of the slide = 3mSlide's angle with the ground = 60°

Reasoning:

Let us consider the following conventions for the slide installed for children below 5 years:

- The height of the slide as AC.
- Distance between the foot of the slide to the point where it touches the ground as AB.
- Length of the slide as BC

Let us consider the following conventions for the slide installed for elder children:

- The height of the slide PR.
- Distance between the foot of the slide to the point where it touches the ground as PQ.

Trigonometric ratio involving AC, BC and $\angle B$ is $\sin 0$ Trigonometric ratio involving PR, QR and $\angle Q$ is $\sin 0$

Solution:

- (i) In $\triangle ABC$, $\sin 30^{\circ} = \frac{AC}{BC}$ $\frac{1}{2} = \frac{1.5}{BC}$ $BC = 1.5 \times 2$ BC = 3
- (ii) In ΔPRQ,

$$\sin Q = \frac{PR}{QR}$$

$$\sin 60^\circ = \frac{3}{QR}$$

$$\frac{\sqrt{3}}{2} = \frac{3}{QR}$$

$$QR = \frac{3 \times 2}{\sqrt{3}}$$

$$= \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

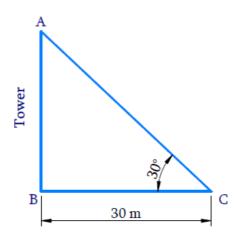
$$= \frac{6\sqrt{3}}{3}$$

$$= 2\sqrt{3}$$

Answer:

Length of slide for children below 5 years = 3 m Length of slide for elder children = $2\sqrt{3}$ m

Q4. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.


Difficulty Level: Medium

Known:

- (i) Angle of elevation of the top of the tower from a point on ground is 30°
- (ii) Distance between the foot of the tower to the point on the ground is 30 m.

Shipped Shippe

Shree Balaji Institute

Reasoning:

Let us consider the height of the tower as AB, distance between the foot of tower to the point on ground as BC.

In $\triangle ABC$,

Trigonometric ratio involving AB, BC and $\angle C$ is $\tan \theta$.

Solution:

In ΔABC,

$$\tan C = \frac{AB}{BC}$$

$$\tan 30^{\circ} = \frac{AB}{30}$$

$$\tan 30^{\circ} = \frac{AB}{30}$$

$$AB = \frac{30}{\sqrt{3}}$$

$$= \frac{30}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

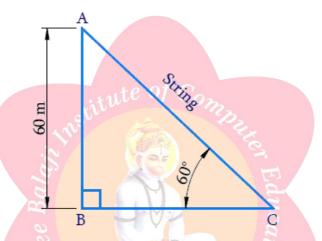
$$= \frac{30\sqrt{3}}{3}$$

$$= 10\sqrt{3}$$

Answer:

Height of tower AB = $10\sqrt{3} m$

A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.


Difficulty Level: Medium

Known:

- (i) Height of the flying kite = 60m
- (ii) Angle made by the string to the ground = 60°

Unknown:

Length of the string

Reasoning:

Let the height of the flying kite as AB, length of the string as AC and the inclination of the string with the ground as $\angle C$.

Trigonometric ratio involving AB, AC and $\angle C$ is $\sin 0$

Solution:

In $\triangle ABC$,

$$\sin C = \frac{AB}{AC}$$

$$\sin 60^{0} = \frac{60}{AC}$$

$$\frac{\sqrt{3}}{2} = \frac{60}{AC}$$

$$AC = \frac{60 \times 2}{\sqrt{3}}$$

$$= \frac{120}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

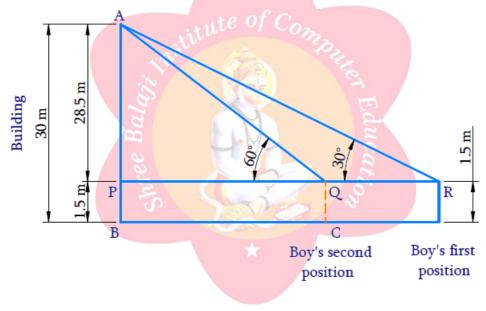
$$= \frac{120\sqrt{3}}{\sqrt{3}}$$

Answer.

Shree Balaji Institute

Length of the string AC = $40^{\circ}3 m$

Q6. A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.


Difficulty Level: Hard

Known:

- (i) Height of the boy = 1.5 m
- (ii) Height of the building = 30 m
- (iii) Angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks toward the building.

Unknown:

Distance, the boy walked towards the building

Reasoning:

Trigonometric ratio involving (AP, PR and $\angle R$) and (AP, PQ and $\angle Q$) is $\tan 0$ [Refer the diagram to visualise AP, PR and PQ]

Distance walked towards the building RQ = PR - PQ

In
$$\triangle$$
 APR
$$\tan R = \frac{AP}{PR}$$

$$\tan 30^{0} = \frac{28.5}{PR}$$

$$\frac{1}{\sqrt{3}} = \frac{28.5}{PR}$$

$$PR = 28.5 \times \sqrt{3} \text{ m}$$
In \triangle APQ
$$\tan Q = \frac{AP}{PQ}$$

$$\tan 60^{0} = \frac{28.5}{PQ}$$

$$\sqrt{3} = \frac{28.5}{PQ}$$

$$PQ = \frac{28.5}{\sqrt{3}} \text{ m}$$

Therefore,

$$PR - PQ = 28.5\sqrt{3} - \frac{28.5}{\sqrt{3}}$$

$$= 28.5\left(\sqrt{3} - \frac{3}{\sqrt{3}}\right)$$

$$= 28.5\left(\sqrt{\frac{3}{3}} - \frac{3}{\sqrt{3}}\right)$$

$$= 28.5\left(\sqrt{\frac{3}{3}} - \frac{3}{\sqrt{3}}\right)$$

$$= \frac{57}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{57\sqrt{3}}{3}$$

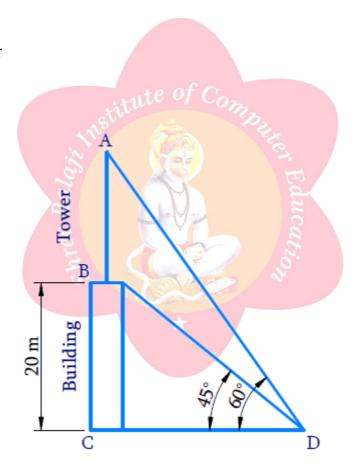
$$= \frac{57\sqrt{3}}{3}$$

$$= 19\sqrt{3} \text{m}$$

Answer:

Distance the boy walked towards the building is $19\sqrt{3}$ m

Trom a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.


Difficulty Level: Hard

Known:

- (i) Angle of elevation from ground to bottom of the tower = 45°
- (ii) Angle of elevation from ground to top of the tower = 60°
- (iii) Height of the building = 20 m
- (iv) Tower is fixed at the top of the 20 m high building

Unknown:

Height of the tower

Reasoning:

Let the height of the building is BC, height of the transmission tower which is fixed at the top of the building is AB. D is the point on the ground from where the angles of elevation of the bottom B and the top A of the transmission tower AB are 45° and 60° respectively.

The distance of the point of observation D from the base of the building C is CD Combined height of the building and tower = AC = AB + BCTrigonometric ratio involving sides AC, BC, CD, and $\angle D$ (45° and 60°) is $\tan 0$

$$\tan 45^0 = \frac{BC}{CD}$$

$$1 = \frac{20}{CD}$$

$$CD = 20$$

In $\triangle ACD$,

$$\tan 60^{0} = \frac{AC}{CD}$$

$$\sqrt{3} = \frac{AC}{20}$$

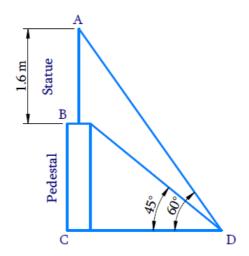
$$AC = 20\sqrt{3}$$

Answer:

Height of the tower, AB = AC - BC

$$AB = 20\sqrt{3} m - 20 m$$
$$= 20\left(\sqrt{3} - 1\right)m$$

Q8. A statue, 1.6 m tall, stands on the top of a pedestal, from a point on the ground. The angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.


Difficulty Level: Hard

Known:

- (i) Height of statue = 1.6 m
- (ii) Angle of elevation from ground to top of the statue = 60°
- (iii) Statue stands on the top of the pedestal.
- (iv) Angle of elevation of the top of the pedestal (bottom of the statue) = 45°

Unknown:

Height of the pedestal

Let the height of the pedestal is BC, height of the statue, stands on the top of the pedestal, is AB. D is the point on the ground from where the angles of elevation of the bottom B and the top A of the statue AB are 45° and 60° respectively.

The distance of the point of observation D from the base of the pedestal C is CD Combined height of the pedestal and statue AC = AB + BC Trigonometric ratio involving sides AC, BC, CD, and $\angle D$ (45° and 60°) is $\tan 0$

Solution:

In $\triangle BCD$,

In $\triangle ACD$,

$$\tan 45^{0} = \frac{BC}{CD}$$

$$1 = \frac{BC}{CD}$$

$$BC = CD \qquad (i)$$

$$\tan 60^{0} = \frac{AC}{CD}$$

$$\tan 60^{0} = \frac{AB + BC}{CD}$$

$$\tan 60^{0} = \frac{AB + BC}{CD}$$

$$\sqrt{3} = \frac{1.6 + BC}{BC}$$

$$\sqrt{3}BC = 1.6 + BC$$

$$\sqrt{3}BC - BC = 1.6$$

$$BC \left(\sqrt{3} - 1\right) = 1.6$$

$$BC = \frac{1.6}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}$$

$$= \frac{1.6\left(\sqrt{3} + 1\right)}{3 - 1}$$

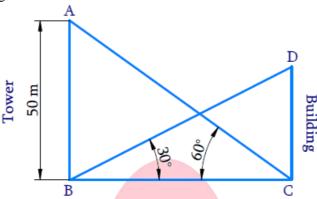
$$= \frac{1.6\left(\sqrt{3} + 1\right)}{2}$$

Answer:

Height of pedestal BC = $0.8(\sqrt{3}+1)m$

 $=0.8(\sqrt{3}+1)$

Q9. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60° . If the tower is 50 m high, find the height of the building.


Difficulty Level: Hard

- Angle of elevation of the top of a building from the foot of the tower = 30°
- (ii) Angle of elevation of the top of the tower from the foot of the building = 60°
- (iii) Height of tower = 50m

Unknown:

Height of the building

Reasoning:

Let the height of the tower is AB and the height of the building is CD. The angle of elevation of the top of the building D from the foot of the tower B is 30° and the angle of elevation of the top of the tower A from the foot of the building C is 60°.

Distance between the foot of the tower and the building is BC. Trigonometric ratio involving sides AB, CD, BC and angles $\angle B$ and $\angle C$ is $\tan 0$

Solution:

In $\triangle ABC$,

$$\tan 60^{0} = \frac{AB}{BC}$$

$$\sqrt{3} = \frac{50}{BC}$$

$$BC = \frac{50}{\sqrt{3}}$$
(i)

In $\triangle BCD$,

$$\tan 30^{0} = \frac{CD}{BC}$$

$$\frac{1}{\sqrt{3}} = \frac{CD}{BC}$$

$$\frac{1}{\sqrt{3}} = \frac{CD}{50}$$

$$\frac{1}{\sqrt{3}} = \frac{CD}{\sqrt{3}}$$

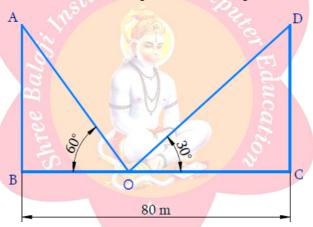
$$CD = \frac{1}{\sqrt{3}} \times \frac{50}{\sqrt{3}}$$

$$CD = \frac{50}{3}$$

$$CD = 16^{\frac{2}{3}}$$

Ight of the building CD= $16\frac{2}{m}$

Q10. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles.


Difficulty Level: Hard

Known:

- (i) The poles of equal height.
- (ii) Distance between poles = 80 m
- (iii) From a point between the poles, the angle of elevation of the top of the poles are 60° and 30° respectively.

Unknown:

Height of the poles and the distances of the point from the poles.

Reasoning:

Let us consider the two poles of equal heights as AB and DC and the distance between the poles as BC. From a point O, between the poles on the road, the angle of elevation of the top of the poles AB and CD are 60° and 30° respectively.

Trigonometric ratio involving angles, distance between poles and heights of poles is tan 0

Solution:

Let the height of the poles be xTherefore AB = DC = x

In ΔAOB,

$$\tan 60^0 = \frac{AB}{BO}BO = \frac{x}{\sqrt{3}}$$
$$\sqrt{3} = \frac{x}{BO}$$

$$\tan 30^{0} = \frac{DC}{OC}$$

$$\frac{1}{\sqrt{3}} = \frac{x}{BC - BO}$$

$$\frac{1}{\sqrt{3}} = \frac{x}{80 - \frac{x}{\sqrt{3}}}$$

$$80 - \frac{x}{\sqrt{3}} = \sqrt{3}x$$

$$\frac{x}{\sqrt{3}} + \sqrt{3}x = 80$$

$$x \left(\frac{1}{\sqrt{3}} + \sqrt{3}\right) = 80$$

$$x \left(\frac{1+3}{\sqrt{3}}\right) = 80$$

$$x \left(\frac{1+3}{\sqrt{3}}\right) = 80$$

$$x = \frac{80\sqrt{3}}{4}$$

$$x = 20\sqrt{3}$$

Height of the poles $x = 20\sqrt{3} m$

Distance of the point O from the pole AB

$$BO = \frac{x}{\sqrt{3}}$$
$$= \frac{20\sqrt{3}}{\sqrt{3}}$$
$$= 20$$

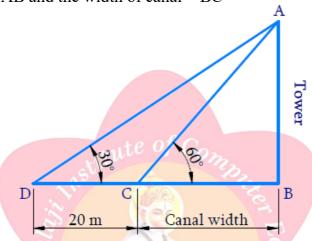
Distance of the point O from the pole CD

$$OC = BC - BO \\
= 80 - 20 \\
= 60$$

Answer:

Height of the poles are $20\sqrt{3}$ m and the distances of the point from the poles are 20m and 60m.

Q11. A TV tower stands vertically on the bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30° (see Fig. 9.12). Find the height of the tower and the width of the canal.



Known:

- (i) The angle of elevation of the top of the tower from a point on the other bank directly opposite the tower is 60°
- (ii) From another point 20 m away from this point in (i) on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°
- (iii) CD = 20 m

Unknown:

Height of the tower = AB and the width of canal = BC

Reasoning:

Trigonometric ratio involving CD, BC, angles and height of tower AB is tan 0.

Solution:

Considering
$$\triangle$$
 ABC,

$$\tan 60^{0} = \frac{AB}{BC}$$

$$\sqrt{3} = \frac{AB}{BC}$$

$$AB = BC\sqrt{3} \dots (1)$$

Considering \triangle ABD,

tan
$$30^0 = \frac{AB}{BD}$$

tan $30^0 = \frac{AB}{BD}$
tan $30^0 = \frac{AB}{CD + BC}$

$$\frac{1}{\sqrt{3}} = \frac{BC\sqrt{3}}{20 + BC}$$
From (1)

$$20 + BC = BC\sqrt{3} \times \sqrt{3}$$

$$20 + BC = 3BC$$

$$3BC - BC = 20$$

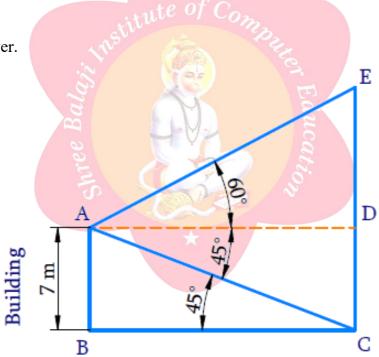
Shree Balaji Institute 2BC = 20 BC = 10

ubstituting BC = 10 m in Equation (1), we get $AB = 10\sqrt{3} \text{ m}$

Answer:

Height of the tower AB = $10\sqrt{3}$ Width of the canal BC = 10 m

Q12. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45° . Determine the height of the tower.


Difficulty Level: Hard

Known:

- (i) Height of building = 7m
- (ii) Angle of elevation of the top of a cable tower from building top = 60°
- (iii) Angle of depression of the foot of the cable tower from building top = 45°

Unknown:

Height of the tower.

Reasoning:

Let the height of the tower is CE and the height of the building is AB. The angle of elevation of the top E of the tower from the top A of the building is 60° and the angle of depression of the bottom C of the tower from the top A of the building is 45°.

Trigonometric ratio involving building height, tower height, angles and distances between

Trigonometric ratio involving building height, tower height, angles and distances between them is tan 0

Solution:

Draw AD||BC.

Then, $\angle DAC = \angle ACB = 45^{\circ}$ (alternate interior angles.)

$$\tan 45^0 = \frac{AB}{BC}$$

$$1 = \frac{7}{BC}$$

$$BC = 7$$

ABCD is a rectangle, Therefore, BC = AD = 7 and AB = CD = 7 In \triangle ADE,

$$\tan 60^{\circ} = \frac{ED}{AD}$$

$$\sqrt{3} = \frac{ED}{7}$$

$$ED = 7\sqrt{3}$$

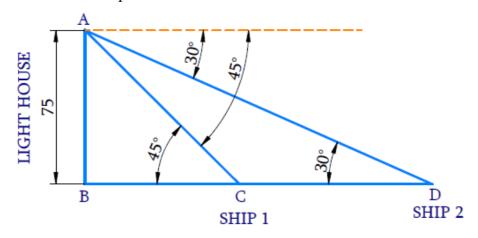
Height of tower

$$CE = ED + CD$$
$$= 7\sqrt{3} + 7$$
$$= 7(\sqrt{3} + 1)$$

Answer:

Height of the tower = $7(\sqrt{3}+1)m$

Q13. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.


Difficulty Level: Hard

Known:

- (i) Height of the lighthouse = 75 m
- (ii) Angles of depression of two ships from the top of the lighthouse are 30° and 45°

Unknown:

Distance between the two ships

Let the height of the lighthouse from the sea-level is AB and the ships are C and D. The angles of depression of the ships C and D from the top A of the lighthouse, are 45° and 60° respectively.

Trigonometric ratio involving AB, BC, BD and angles is tan 0.

Distance between the ships, CD = BD - BC

Solution:

In $\triangle ABC$,

$$\tan 45^{0} = \frac{AB}{BC}$$

$$1 = \frac{75}{BC}$$

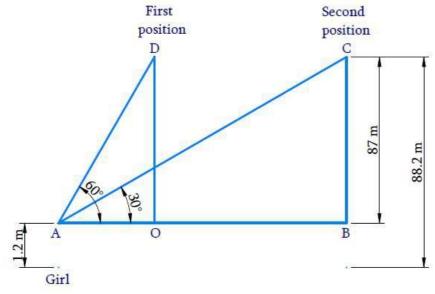
$$BC = 75$$

In $\triangle ABD$,

$$\tan 30^{0} = \frac{AB}{BD}$$

$$\frac{1}{\sqrt{3}} = \frac{75}{BD}$$

$$BD = 75\sqrt{3}$$


Distance between two ships CD = BD - BC

$$CD = 75\sqrt{3} - 75$$
$$= 75\left(\sqrt{3} - 1\right)$$

Answer:

Distance between two ships $CD = 75(\sqrt{3} - 1)m$

Q14. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30° (see Fig. 9.13). Find the distance travelled by the balloon during the interval.

Known:

- (i) Height of the girl = 1.2 m
- (ii) Vertical height of balloon from ground = 88.2 m
- (iii) Angle of elevation of the balloon from the eyes of the girl is reducing from 60° to 30° as the balloon moves along wind.
- (iv) From the figure, OD = BC can be calculated as

$$88.2 \text{ m} - 1.2 \text{ m} = 87 \text{ m}$$
------ Result (1)

Unknown:

Distance travelled by the balloon, OB

Reasoning:

Trigonometric ratio involving AB, BC, OD, OA and angles is tan 0. [Refer AB, BC, OA and OD from the figure.]

Distance travelled by the balloon OB = AB - OA

Solution:

From the figure, OD = BC, can be calculated as

$$88.2 \text{ m} - 1.2 \text{ m} = 87 \text{ m}$$
 (1)

In \triangle AOD,

$$\tan 60^{0} = \frac{OD}{OA}$$

$$\sqrt{3} = \frac{87}{OA}$$

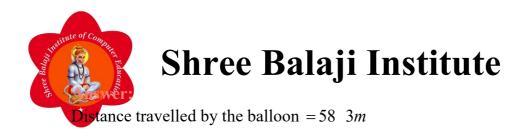
$$OA = \frac{87}{\sqrt{3}}$$

$$= \frac{87}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{87 \times \sqrt{3}}{3}$$

$$= 29\sqrt{3} \text{m}$$

In \triangle ABC,


$$\tan 30^0 = \frac{BC}{AB}$$

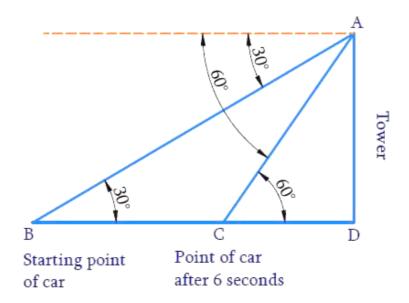
$$\frac{1}{\sqrt{3}} = \frac{87}{AB}$$

$$AB = 87\sqrt{3}$$

Distance travelled by the balloon, OB = AB - OA

$$OB = 87\sqrt{3} - 29\sqrt{3}$$
$$= 58\sqrt{3}$$

Q15. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30° , which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60° . Find the time taken by the car to reach the foot of the tower from this point.


Difficulty Level: Hard

Known:

- (i) Angle of depression is 30°
- (ii) 6 seconds later angle of depression is 60°

Unknown:

Time taken by the car to reach the foot of the tower = CD

Reasoning:

Let the height of the tower as AD and the starting point of the car as B and after 6 seconds point of the car as C. The angles of depression of the car from the top A of the tower at point B and C are 30° and 60° respectively.

Distance travelled by the car from the starting point towards the tower in 6 seconds = BC Distance travelled by the car after 6 seconds towards the tower = CD

Trigonometric ratio involving AD, BC, CD and angles is tan 0.

We know that,

Speed =
$$\frac{\text{Distance}}{\text{Time}}$$

The speed of the car is calculated using the distance BC and time = 6 seconds. Using Speed and Distance CD, time to reach foot can be calculated.

$$\tan 30^{0} = \frac{AD}{BD}$$

$$\frac{1}{\sqrt{3}} = \frac{AD}{BD}$$

$$BD = AD\sqrt{3} \dots (1)$$

In ΔACD,

$$\tan 60^{0} = \frac{AD}{CD}$$

$$\sqrt{3} = \frac{AD}{CD}$$

$$AD = CD\sqrt{3}.....(2)$$

From equation (1) and (2)

$$BD = CD\sqrt{3} \times \sqrt{3}$$

$$BC + CD = 3CD$$

$$BC = 2CD \dots (3)$$

$$E = BD = BC + CD$$

Distance travelled by the car from the starting point towards the tower in 6 seconds = BC Speed of the car to cover distance BC in 6 seconds;

Speed =
$$\frac{Distance}{Time}$$

$$= \frac{BC}{6}$$

$$= \frac{2CD}{6} \qquad [from(3)]$$

$$= \frac{CD}{3}$$
Speed of the car = $\frac{CD}{3} m/s$

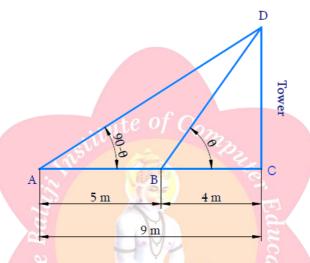
Distance travelled by the car from point C, towards the tower = CD Time to cover distance CD at the speed of $\frac{CD}{3}$ m/s

Time =
$$\frac{\text{Distance}}{\text{Speed}}$$

= $\frac{CD}{\frac{CD}{3}}$
= $CD \times \frac{3}{CD}$

Shree Balaji Institute = 3 Answer: Time taken by the car to reach the foot of the tower from point C is 3 seconds.

The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.


Difficulty Level: Hard

Known:

Angle of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower are complimentary.

Unknown:

To prove height of the tower is 6m.

Reasoning:

Let the height of the tower as CD. B is a point 4m away from the base C of the tower and A is a point 5m away from the point B in the same straight line. The angles of elevation of the top D of the tower from the points B and A are complementary.

Since the angles are complementary, if one angle is θ and the other is $(90^{\circ} - \theta)$. Trigonometric ratio involving CD, BC, AC and angles is $\tan \theta$.

Using $\tan 0$ and $\tan (90^{\circ} - 0) = \cot 0$ ratios are equated to find the height of the tower.

Solution:

In \triangle BCD,

$$tan0 = \frac{CD}{BC}$$

$$tan0 = \frac{CD}{4}$$
(1)

Here,

$$AC = AB + BC$$
$$= 5 + 4$$
$$= 9$$

$$\tan(90-0) = \frac{CD}{AC}$$

$$\cot 0 = \frac{CD}{9}$$

$$\frac{1}{\tan 0} = \frac{CD}{9}$$

$$\tan(90-0) = \cot 0$$

$$\begin{vmatrix} \cot 0 = \frac{1}{2} \\ \cot 0 = \frac{1}{2} \\ \cot 0 = \frac{1}{2} \end{vmatrix}$$

$$\tan 0 = \frac{9}{CD}$$
(2)

From equation (1) and (2)

$$\frac{CD}{4} = \frac{9}{CD}$$

$$CD^{2} = 36$$

$$CD = \pm 6$$

Since, Height cannot be negative Therefore, height of the tower is 6m.

Shree Balaji Institute